Строение микромира

 

Масштабы микромира

Методы регистрации элементарных частиц

Классификация и свойства элементарных частиц

Волновые и корпускулярные свойства элементарных частиц

Теория атома Резерфорда-Бора

 

Обложка / Оглавление / Методы регистрации элементарных частиц

 

 

Источники элементарных частиц

 

Для изучения элементарных частиц требуются их источники. До создания ускорителей в качестве таких источников использовались природные радиоактивные элементы и космические лучи. В космических лучах присутствуют элементарные частицы самых разных энергий вплоть до таких, которые нельзя получить сегодня искусственным путем. Недостаток космических лучей как источника частиц с высокими энергиями в том, что таких частиц очень немного. Появление частицы с высокой энергией в поле зрения прибора носит случайный характер.

Ускорители элементарных частиц дают потоки элементарных частиц, обладающих одинаково высокой энергией. Ускорители существуют различных типов: бетатрон, циклотрон, линейный ускоритель.

Расположенная недалеко от Женевы Европейская организация по ядерным исследованиям (ЦЕРН*) является обладателем самого большого на сегодняшний день ускорителя элементарных частиц, построенного в кольцевом туннеле под землей на глубине 100 м. Общая длина туннеля составляет 27 км. (кольцо примерно 8.6 км в диаметре). Супер коллайдер должен был быть запущен в соответствии с программой в 2007 г. Около 4000 т металла будет охлаждено до температуры всего на 2° выше абсолютного нуля. В результате ток в 1,8 миллиона ампер будет проходить по сверхпроводящим кабелям почти без потерь.

Ускорители элементарных частиц являются настолько грандиозными сооружениями, что их называют пирамидами XX века.

 

* Аббревиатура CERN произошла от фр. Conseil Européen pour la Recherche Nucléaire (Европейский Совет по Ядерным Исследованиям). В русском языке обычно используется аббревиатура ЦЕРН.

 

Методы регистрации элементарных частиц

 

1.     Сцинтилляционные счетчики

Первоначально для регистрации элементарных частиц использовались люминесцентные экраны – экраны, покрытые специальным веществом, люминофором, способным преобразовывать поглощаемую ими энергию в световое излучение (люминесцировать). Элементарная частица при попадании в такой экран дает слабую вспышку, настолько слабую, что наблюдать ее можно только в полной темноте. Необходимо было иметь изрядные терпение и внимание, чтобы, сидя в полной темноте, часами подсчитывать количество замеченных вспышек.

В современном сцинтилляционном счетчике подсчет вспышек производится автоматически. Счетчик состоит из сцинтиллятора, фотоумножителя и электронных устройств для усиления и подсчета импульсов.

Сцинтиллятор преобразует энергию частицы в кванты видимого света.

Кванты света попадают в фотоумножитель, который преобразует их в импульсы тока.

Импульсы усиливаются электрической схемой и автоматически сосчитываются.

 

2.     Химические методы

Химические методы основаны на том, что ядерные излучения являются катализаторами некоторых химических реакций, то есть ускоряют или создают возможность их протекания.

 

3.     Калориметрические методы

В калориметрических методах регистрируют количество теплоты, которая выделяется при поглощении излучения веществом. Один грамм радия, например, выделяет в час примерно 585 дж. тепла.

 

4.     Методы, основанные на применении эффекта Черенкова

Ничто в природе не может двигаться быстрее света. Но когда мы так говорим, мы имеем в виду движение света в вакууме. В веществе свет распространяется со скоростью , где с – скорость света в вакууме, а n – показатель преломления вещества. Следовательно, в веществе свет движется медленнее, чем в вакууме. Элементарная частица, двигаясь в веществе, может превысить скорость света в этом веществе, не превосходя при этом скорость света в вакууме. В этом случае возникает излучение, которое открыл в свое время Черенков. Излучение Черенкова регистрируется фотоумножителями так же, как и в сцинтилляционном методе. Метод позволяет регистрировать только быстрые, то есть обладающие высокими энергиями, элементарные частицы.

 

Следующие методы не только позволяют зарегистрировать элементарную частицу, но и увидеть ее след.

 

5.     Камера Вильсона

Изобретена Чарльзом Вильсоном в 1912 г., а в 1927 г. он получил за нее Нобелевскую премию. Камера Вильсона – это очень сложное инженерное сооружение. Мы приводим только упрощенную схему.

 

Рабочий объем камеры Вильсона заполнен газом и содержит в себе пар воды или спирта. При быстром перемещении поршня вниз газ резко охлаждается и пар становится перенасыщенным. Когда в этом пространстве пролетает частица, создающая на своем пути ионы, то на этих ионах образуются капельки  сконденсировавшегося пара. В камере возникает след траектории частицы (трек) в виде узкой полоски капелек тумана. При сильном боковом освещении трек можно видеть и сфотографировать.

 

6.     Пузырьковая камера (изобретена Глезером в 1952 г.)

Пузырьковая камера действует аналогично камере Вильсона. Только в качестве рабочего тела используется не переохлажденный пар, а перегретая жидкость (пропан, жидкий водород, азот, эфир, ксенон, фреон...). Перегретая жидкость, так же как и переохлажденный пар, находится в неустойчивом состоянии. Пролетающая через такую жидкость частица образует ионы, на которых сразу же образуются пузырьки. Жидкостная пузырьковая камера эффективнее газовой камеры Вильсона. Физикам ведь важно не только наблюдать трек пролетевшей частицы. Важно, чтобы в пределах области наблюдения частица столкнулась с другой частицей. Картина взаимодействия частиц гораздо более информативна. Пролетая через более плотную жидкость, в которой высокая концентрация протонов и электронов, частица имеет гораздо больше шансов испытать столкновение.

 

7.     Эмульсионная камера

Впервые использовалась советскими физиками Мысовским и Ждановым. Фотографическая эмульсия изготавливается на основе желатины. Продвигаясь в плотной желатине, элементарная частица подвергается частым столкновениям. За счет этого путь частицы в эмульсии часто очень короткий и его после проявления фотоэмульсии изучают под микроскопом.

 

8.     Искровая камера (изобретатель Краншау)

 

В камере А расположена система сетчатых электродов. На эти электроды подается высокое напряжение с блока питания Б. Когда через камеру пролетает элементарная частица В, она создает ионизированный след. По этому следу проскакивает искра, которая и делает видимым трек частицы.

 

9.     Стриммерная камера

Стриммерная камера аналогична искровой, только расстояние между электродами больше (до полуметра). Напряжение на электроды подается на очень короткое время с таким расчетом, чтобы настоящая искра не успела бы развиться. Возникнуть успевают только зачатки искры – стриммеры.

 

10.            Счетчик Гейгера

Счётчик Гейгера представляет собой, как правило, цилиндрический катод, вдоль оси, которого натянута проволока – анод. Система заполнена газовой смесью.

При прохождении через счётчик заряженная частица ионизирует газ. Образующиеся электроны, двигаясь к положительному электроду - нити, попадая в область сильного электрического поля, ускоряются и в свою очередь ионизуют молекулы газа, что приводит к коронному разряду. Амплитуда сигнала достигает нескольких вольт и легко регистрируется.

Счётчик Гейгера регистрирует факт прохождения частицы через счётчик, но не позволяет измерить энергию частицы.

 

 

 

 

 

 

 

 

Сайт управляется системой uCoz