История жизни

 

Пифагор (582-500) и его ученики ввели в математику иррациональные числа. Считали Землю шарообразной, вращающейся вокруг собственной оси. Рассматривали числа как основу всего существующего, ключ к представлению о мироздании.

 

Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с теоремой Пифагора. Даже те, кто в своей жизни далек от математики, продолжают сохранять воспоминания о "пифагоровых штанах" - квадрате на гипотенузе, равновеликом двум квадратам на катетах. Причина такой популярности теоремы Пифагора ясна: это простота - красота - значимость. В самом деле, теорема Пифагора проста, но не очевидна. Противоречие двух начал и придает ей особую притягательную силу, делает ее красивой. Но, кроме того, теорема Пифагора имеет огромное значение. Она применяется в геометрии буквально на каждом шагу. Существует около пятисот различных доказательств этой теоремы, что свидетельствует о гигантском числе ее конкретных реализации.

Исторические исследования датируют появление на свет Пифагора приблизительно 580 годом до нашей эры. Счастливый отец Мнесарх окружает мальчика заботами. Возможности дать сыну хорошее воспитание и образование у него были.

Будущий великий математик и философ уже в детстве обнаружил большие способности к наукам. У своего первого учителя Гермодамаса Пифагор получает знания основ музыки и живописи. Для упражнения памяти Гермодамас заставлял его учить песни из "Одиссеи" и "Илиады". Первый учитель прививал юному Пифагору любовь к природе и ее тайнам.

Прошло несколько лет, и по совету своего учителя Пифагор решает продолжить образование в Египте. При помощи учителя Пифагору удается покинуть остров Самос. Но пока до Египта далеко. Он живет на острове Лесбос у своего родственника Зоила. Там происходит знакомство Пифагора с философом Ферекидом - другом Фалеса Милетского. У Ферекида Пифагор учится астрологии, предсказанию затмений, тайнам чисел, медицине и другим обязательным для того времени наукам.

Затем в Милете он слушает лекции Фалеса и его более молодого коллеги и ученика Анаксимандра, выдающегося географа и астронома. Много важных знаний приобрел Пифагор за время своего пребывания в Милетской школе.

Перед Египтом он на некоторое время останавливается в Финикии, где, по преданию, учится у знаменитых сидонских жрецов.

Учеба Пифагора в Египте способствует тому, что он сделался одним из самых образованных людей своего времени. Здесь же Пифагор попадает в персидский плен.

Согласно старинным легендам, в плену в Вавилоне Пифагор встречался с персидскими магами, приобщился к восточной астрологии и мистике, познакомился с учением халдейских мудрецов. Халдеи познакомили Пифагора со знаниями, накопленными восточными народами в течение многих веков: астрономией и астрологией, медициной и арифметикой.

Двенадцать лет пробыл в вавилонском плену Пифагор, пока его не освободил персидский царь Дарий Гистасп, прослышавший о знаменитом греке. Пифагору уже шестьдесят, он решает вернуться на родину, чтобы приобщить к накопленным знаниям свой народ.

 

С тех пор как Пифагор покинул Грецию, там произошли большие изменения. Лучшие умы, спасаясь от персидского ига, перебрались в Южную Италию, которую тогда называли Великой Грецией, и основали там города-колонии Сиракузы, Агригент, Кротон. Здесь и задумывает Пифагор создать собственную философскую школу.

Довольно быстро он завоевывает большую популярность среди жителей. Пифагор умело использует знания, полученные в странствиях по свету. Со временем ученый прекращает выступления в храмах и на улицах. Уже в своем доме Пифагор учил медицине, принципам политической деятельности, астрономии, математике, музыке, этике и многому другому. Из его школы вышли выдающиеся политические и государственные деятели, историки, математики и астрономы. Это был не только учитель, но и исследователь. Исследователями становились и его ученики. Пифагор развил теорию музыки и акустики, создав знаменитую "пифагорейскую гамму" и проведя основополагающие эксперименты по изучению музыкальных тонов: найденные соотношения он выразил на языке математики. В Школе Пифагора впервые высказана догадка о шарообразности Земли. Мысль о том, что движение небесных тел подчиняется определенным математическим соотношениям, идеи "гармонии мира" и "музыки сфер", впоследствии приведшие к революции в астрономии, впервые появились именно в Школе Пифагора.

Многое сделал ученый и в геометрии. Прокл так оценивал вклад греческого ученого в геометрию: "Пифагор преобразовал геометрию, придав ей форму свободной науки, рассматривая ее принципы чисто абстрактным образом и исследуя теоремы с нематериальной, интеллектуальной точки зрения. Именно он нашел теорию иррациональных количеств и конструкцию космических тел".

В школе Пифагора геометрия впервые оформляется в самостоятельную научную дисциплину. Именно Пифагор и его ученики первыми стали изучать геометрию систематически - как теоретическое учение о свойствах абстрактных геометрических фигур, а не как сборник прикладных рецептов по землемерию.

Важнейшей научной заслугой Пифагора считается систематическое введение доказательства в математику, и, прежде всего, в геометрию. Строго говоря, только с этого момента математика и начинает существовать как наука, а не как собрание древнеегипетских и древневавилонских практических рецептов. С рождением же математики зарождается и наука вообще, ибо "ни одно человеческое исследование не может называться истинной наукой, если оно не прошло через математические доказательства" (Леонардо да Винчи).

Так вот, заслуга Пифагора и состояла в том, что он, по-видимому, первым пришел к следующей мысли: в геометрии, во-первых, должны рассматриваться абстрактные идеальные объекты, и, во-вторых, свойства этих идеальных объектов должны устанавливаться не с помощью измерений на конечном числе объектов, а с помощью рассуждений, справедливых для бесконечного числа объектов. Эта цепочка рассуждений, которая с помощью законов логики сводит неочевидные утверждения к известным или очевидным истинам, и есть математическое доказательство.

Открытие теоремы Пифагором окружено ореолом красивых легенд. Прокл, комментируя последнее предложение 1 книги "Начал" Евклида, пишет: "Если послушать тех, кто любит повторять древние легенды, то придется сказать, что эта теорема восходит к Пифагору; рассказывают, что он в честь этого открытия принес в жертву быка". Впрочем, более щедрые сказители одного быка превратили в одну гекатомбу, а это уже целая сотня. И хотя еще Цицерон заметил, что всякое пролитие крови было чуждо уставу пифагорейского ордена, легенда эта прочно срослась с теоремой Пифагора и через две тысячи лет продолжала вызывать горячие отклики.

Михаил Ломоносов по этому поводу писал: "Пифагор за изобретение одного геометрического правила Зевесу принес на жертву сто волов. Но ежели бы за найденные в нынешние времена от остроумных математиков правила по суеверной его ревности поступать, то едва бы в целом свете столько рогатого скота сыскалось".

А.В. Волошинов в своей книге о Пифагоре отмечает: "И хотя сегодня теорема Пифагора обнаружена в различных частных задачах и чертежах: и в египетском треугольнике в папирусе времен фараона Аменемхета I (около 2000 года до нашей эры), и в вавилонских клинописных табличках эпохи царя Хаммурапи (XVIII веке до нашей эры), и в древнейшем китайском трактате "Чжоу-би суань цзинь" ("Математический трактат о гномоне"), время создания которого точно не известно, но где утверждается, что в XII веке до нашей эры китайцы знали свойства египетского треугольника, а к VI веку до нашей эры - и общий вид теоремы, и в древнеиндийском геометрическо-теологическом трактате VII-V веках до нашей эры "Сульва сутра" ("Правила веревки"), - несмотря на все это, имя Пифагора столь прочно сплавилось с теоремой Пифагора, что сейчас просто невозможно представить, что это словосочетание распадется. То же относится и к легенде о заклании быков Пифагором. Да и вряд ли нужно препарировать историко-математическим скальпелем красивые древние предания.

Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов.

 

 

 

Как известно, Пифагор говорил, что "все вещи суть числа". Если это положение истолковать в современном духе, то в логическом отношении оно кажется бессмыслицей. Но то, что понимал под этим положением Пифагор, - не совсем бессмыслица. Пифагор открыл, что число имеет большое значение в музыке; об установленной им связи между музыкой и арифметикой напоминают до сих пор такие математические выражения, как "гармоническое среднее" и "гармоническая прогрессия". В его представлении числа, наподобие чисел на игральных костях или картах, обладают формой. Мы все еще говорим о квадратах и кубах чисел, и этими терминами мы обязаны Пифагору. Пифагор точно так же говорил о продолговатых, треугольных, пирамидальных числах и т. д. Это были числа горстей гальки (или, более естественно для нас, числа горстей дроби), требуемые для образования формы. Пифагор, очевидно, полагал, что мир состоит из атомов, что тела построены из молекул, состоящих в свою очередь из атомов упорядоченных в различные формы. Таким образом, он надеялся сделать арифметику научной основой в физике, так же как и в эстетике.

 

 

 

Сайт управляется системой uCoz